第一课件网板报幼儿管理
当前位置: 第一板报网 > 手抄报 > 学科手抄报 >

塞凯赖什夫妇

  1933年,匈牙利数学家乔治·塞凯赖什(GEORGE SZEKERES)还只有22岁。那时,他常常和朋友们在匈牙利的首都布达佩斯讨论数学。这群人里面还有同样生于匈牙利的数学怪才——保罗·埃尔德什(PAUL ERDŐS)大神。不过当时,埃尔德什只有20岁。

  在一次数学聚会上,一位叫做爱丝特·克莱恩(ESTHER KLEIN)的美女同学提出了这么一个结论:在平面上随便画五个点(其中任意三点不共线),那么一定有四个点,它们构成一个凸四边形。塞凯赖什和埃尔德什等人想了好一会儿,没想到该怎么证明。于是,美女同学得意地宣布了她的证明:这五个点的凸包(覆盖整个点集的最小凸多边形)只可能是五边形、四边形和三角形。前两种情况都已经不用再讨论了,而对于第三种情况,把三角形内的两个点连成一条直线,则三角形的三个顶点中一定有两个顶点在这条直线的同一侧,这四个点便构成了一个凸四边形。众人大呼精彩。之后,埃尔德什和塞凯赖什仍然对这个问题念念不忘,于是尝试对其进行推广。最终,他们于1935年发表论文,成功地证明了一个更强的结论:对于任意一个正整数N ≥ 3,总存在一个正整数M,使得只要平面上的点有M个(并且任意三点不共线),那么一定能从中找到一个凸N边形。埃尔德什把这个问题命名为了“幸福结局问题”。

第一板报网是第一课件网旗下专业板报网站,提供各种黑板报,手抄报,宣传板,以及板报素材,板报教程等资源,是大家办报的得力助手
copyright 2019-2023 ALL resever www.wujyed.com