数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用.有些重要的数学概念对数学分支的产生起着奠定性的作用.我们刚学过的函数就是这样的重要概念.在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域.纵览宇宙,运算天体,探索热的传导,揭示电磁秘密,这些都和函数概念息息相关.正是在这些实践过程中,人们对函数的概念不断深化.
他又用函数表示在直角坐标系中曲线上一点的横坐标、纵坐标.1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:“由某个变量及任意的一个常数结合而成的数量.”意思是凡变量x和常量构成的式子都叫做x的函数.贝努利所强调的是函数要用公式来表示.
后来数学家觉得不应该把函数概念局限在只能用公式来表达上.只要一些变量变化,另一些变量能随之而变化就可以,至于这两个变量的关系是否要用公式来表示,就不作为判别函数的标准.
1755年,瑞士数学家欧拉把函数定义为:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”在欧拉的定义中,就不强调函数要用公式表示了.由于函数不一定要用公式来表示,欧拉曾把画在坐标系的曲线也叫函数.他认为:“函数是随意画出的一条曲线.”
当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱怀疑态度.他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”.1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数.”在柯西的定义中,首先出现了自变量一词.
1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义指出了对应关系(条件)的必要性,利用这个关系,可以来求出每一个x的对应值.
1837年,德国数学家狄里克雷认为怎样去建立x与y之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数.”这个定义抓住了概念的本质属性,变量y称为x的函数,只需有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的y值和它对应就行了,不管这个法则是公式或图象或表格或其他形式.这个定义比前面的定义带有普遍性,为理论研究和实际应用提供了方便.因此,这个定义曾被比较长期的使用着.
自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在中学课本里用的了.