天地万物都经常带有电荷,这是因为构成物体的原子由于各种原因(如摩擦、受热、化学变化等)失去或获得电子的缘故。用现代科学方法可以求得,太阳所带的总电荷量约为80库仑,电子所带的负电荷e=1.6021892X10-19库仑(质子所带的电量也是这个数值,不同的是质子所带的是正电荷)。电子的电荷使人们迄今为止所认识的最小电荷,目前已发现的基本粒子的电荷数也都是这个最小的电荷数的整数倍。
早在60年代起,科学家门从理论上提出构成强子的基础粒子的电荷不一定是 e的整数倍,可能是一个带有分数的电荷。经过多年的努力,于1979年1月宣称:在铌球上找到了两个分数电荷,其值分别为(0.34e和0.345e。)
相关资料:
电子是一种基本粒子,目前无法再分解为更小的物质。其直径是质子的0.001倍,重量为质子的1/1836。电子围绕原子的核做高速运动。电子通常排列在各个能量层上。当原子互相结合成为分子时,在最外层的电子便会由一原子移至另一原子或成为彼此共享的电子。
这是由爱尔兰物理学家乔治·丁·斯通尼于1891年根据电的electric + -on“子”造的字
电子属于亚原子粒子中的轻子类。 轻子被认为是构成物质的基本粒子之一,即其无法被分解为更小的粒子。它带有1/
物质的基本构成单位——原子 是由电子、中子和质子三者共同组成。相对于中子和质子组成的原子核,电子的质量极小。质子的质量大约是电子的1840倍。
当电子脱离原子核束缚在其它原子中自由移动时,其产生的净流动现象称为电流。
静电是指当物体带有的电子多于或少于原子核的电量,导致正负电量不平衡的情况。当电子过剩 时,称为物体带负电;而电子不足时,称为物体带正电。当正负电量平衡时,则称物体是电中性的。 静电在我们日常生活中有很多应用方法,其中例子有喷墨打印机。
电子是在1897年由剑桥大学的卡文迪许实验室的约瑟夫·汤姆生在研究阴极射线时发现的。
一种对在原子核附近以不同概率分布的密云的基本假设。作用范围现阶段只能在核外考虑(所有假设粒子现在都只能在核外摸索摸索)它被归于叫做轻子的低质量物质粒子族,被设成具有负值的单位电荷。
电子块头小重量轻(比 μ介子还轻205倍),被归在亚原子粒子中的轻子类。轻子是物质被划分的作为基本粒子的一类。电子带有1/2自旋,满足费米子的条件(按照费米—狄拉克统计)。电子所带电荷约为- 1.6 × 10-19库仑,质量为9.10 × 10-31 kg (0.51 MeV/c2)。通常被表示为e-。与电子电性相反的粒子被称为正电子,它带有与电子相同的质量,自旋和等量的正电荷。 电子在原子内做绕核运动,能量越大距核运动的轨迹越远.有电子运动的空间叫电子层.第一层最多可有2个电子.第二层最多可以有8个,第n层最多可容纳2n^2个电子,最外层最多容纳8个电子.最后一层的电子数量决定物质的化学性质是否活泼,1、2电子为金属元素,3、4、5、6、7为非金属元素,8为稀有气体元素.
物质的电子可以失去也可以得到,物质具有得电子的性质叫做氧化性,该物质为氧化剂;物质具有失电子的性质叫做还原性,该物质为还原剂。物质氧化性或还原性的强弱由得失电子难易决定,与得失电子多少无关。
电子的运动与宏观物体运动区别的几大特征
(1)质量很小(9.109×10-31kg);
(2)带负电荷;
(3)运动空间范围小(直径约10-10m) ;
(4)运动速度快(10-6m)。电子的运动特征就与宏观物体的运动有着极大的不同----它没有确定的轨道。因此科学家主要采用建立模型的方法对电子的运动情况进行研究。
核外电子排布的规律
1.电子是在原子核外距核由近及远、能量由低至高的不同电子层上分层排布;
2.每层最多容纳的电子数为n的平方的二倍个(n代表电子层数);
3.最外层电子数不超过8个(第一层不超过2个),次外层不超过18个,倒数第三层不超过32个。
4.电子一般总是尽先排在能量最低的电子层里,即先排第一层,当第一层排满后,再排第二层,第二层排满后,再排第三层。
电子在原子核外空间一定范围内出现,可以想象为一团带负电的云雾笼罩在原子核周围,所以,人们形象地把它叫做“电子云”
电子并非基本粒子
100多年前,当美国物理学家Robert Millikan首次通过实验测出电子所带的电荷为1.602E-19C后,这一电荷值变被广泛看作为电荷基本单元。然而如果按照经典理论,将电子看作“整体”或者“基本”粒子,将使我们对电子在某些物理情境下的行为感到极端困惑,比如当电子被置入强磁场后出现的非整量子霍尔效应。为了解决这一难题,1980年,美国物理学家Robert Laughlin提出一个新的理论解决这一迷团,该理论同时也十分简洁地诠释了电子之间复杂的相互作用。然而接受这一理论确是要让物理学界付出“代价”的:由该理论衍生出的奇异推论展示,电流实际上是由1/3电子电荷组成的。
在一项新的实验中,Weizmann机构的科学家设计出精妙的方法去检验这一非整电子电荷是否存在。该实验将能很好地检测出所谓的“撞击背景噪声”,这是分数电荷存在的直接证据。科学家将一个有电流通过的半导体浸入高强磁场,非整量子霍尔效应随之被检测出来,他们又使用一系列精密的仪器排除外界噪声的干扰,该噪声再被放大并分析,结果证实了所谓的“撞击背景噪声”的确来源于电子,因而也证实了电流的确是由1/3电子电荷组成。由此他们得出电子并非自然界基本的粒子,而是更“基本”更“简单”且无法再被分割的亚原子粒子组成。